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The Faxen relations for a rigid particle in an arbitrary Stokes flow are generalized to 
give expressions for the stresslet (and higher stress moments) exerted by the particle 
on the fluid, and also to viscous drops immersed in a viscous fluid. 

1. Introduction 
Faxen (1924) considered the problem of determining the force F and couple L 

exerted by an arbitrary Stokes flow on a stationary rigid sphere in an unbounded 
fluid at  zero Reynolds number. He showed that in a fluid of viscosity p, F and L are 
given in terms of the prescribed fluid flow at infinity u,(r) by 

F = 6 7 7 , ~ ~  (u, + & U ~ V ~ U , ) ~ ,  

L = 8 7 7 , ~ ~ ~  X $(v A U,)O, 

( 1 )  

(2) 

where the superscript zero indicates evaluation a t  the sphere centre and clr is the sphere 
radius. These relations are known as Faxhn’s first and second laws. A similar result 
was obtained by Batchelor & Green (1 972) in computing the stress in a dilute suspension 
of rigid spheres. They demonstrated that the stresslet S exerted by an isolated sphere 
on the fluid is 

s = 7rpa3 x &[VU, + (VU,)T + &aT(Vu, + (Vu,)T)]? (3) 

There are two directions in which these results might usefully be extended. The 
first is to higher moments of the stress distribution and the second to particles other 
than rigid spheres. The computation of higher stress moments is precisely what is 
required to carry out a reflexions expansion for the interaction of two or more particles 
in Stokes flow: in the evaluation of hydrodynamic forces on the particles correct to 
O(l/R)n, with R the particle separation and 1 the largest particle length, a knowledge 
of the (n - 1)th stress moment for each particle in unbounded fluid is both necessary 
and sufficient. The details are given in Rallison (1977). 

The generalization of the first and second Faxen laws to rigid particles of other 
shapes was made by Brenner (1964). For a rigid ellipsoid of semi-axes (a, b, c)  in the 
directions of unit vectors (p, q, r), for instance, he showed that 

where 
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and the tensors X and Y are given in terms of elliptic integrals. (The result for L given 
here is simpler than Brenner’s but equivalent to it.) Brenner also made the important 
simplifying observation that, by means of the reciprocal theorem, the problem of 
determining the force or couple on a particle in an arbitrary flow may be reduced to 
that of finding the stress induced by the same particle in translation or rotation 
respectively. For the latter problems the solution is frequently known, and at  any 
rate is easier to determine than that for the fully general velocity field (though the 
simplification has not always been exploited, e.g. see Chwang 1975). 

The purpose of this note is first to demonstrate that Fax& relations for the higher 
moments of the stress (in particular the stresslet) can be generated by methods 
analogous to Brenner’s, and second to derive the corresponding results for viscous 
drops rather than rigid particles. By way of illustration of the techniques, we calculate 
the stresslet due to a rigid ellipsoid and also the force on and stresslet due to a viscous 
drop held almost spherical by surface tension. 

2. Rigid particles 
2.1. General formulation 

On subtracting the prescribed flow at infinity, the fluid velocity u outside the particle 
satisfies 

(4) I v.u = 0, 
v. u = 0, u = -pl +p(Vu + (VU)T), 

with u -+ 0 as r+ 03 and u = - u, on S, the particle surface. In  addition, u, and the 
corresponding stress a, are assumed to satisfy the Stokes equations (4). 

The fundamental result which we exploit is the reciprocal theorem (Happel & 
Brenner 1965, 3 3): if (u, a) and (u‘, o f )  are two different solutions of (4) corresponding 
respectively to boundary conditions u = - u, and u‘ = - u: on S, then 

or in a form more suitable for our purposes, 

(u:. u. n - u. u: . n) dS = u,. (a’+ u:). n dS. ( 5 )  
J S  

Now the choice of different ‘primed’ fields generates a sequence of identities for the 
stress and its moments. In  particular, choosing u: = U‘ reduces the left-hand side to 
U’ . F, while u: = 51’ A r gives 51’. L, and ub = E’ . r gives E’ : S. The stresses a’ + ub 
on the right-hand side are then (known) linear functions of the forcings U’, 51‘ and 
E’, and as these tensors are arbitrary, an expression for F, L or S is obtained by 
‘cancellation ’ of the primed quantities. There are plainly such identities a t  all orders. 

Brenner (1 963) suggested a convenient scheme for displaying the results for the 
force and couple on a particle translating and rotating, namely the use of a matrix 
of resistance tensors. Hinch (1972) generalized this scheme to include the stresslet. 
We see that, within the same formalism, results may be given for all the stress 
moments in terms of velocity gradients of all orders. In  addition it may be shown 
(Rallison 1977) that this ‘grand resistance matrix ’ of tensor coefficients is symmetric 
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and positive definite, natural extensions of the results of Brenner (1963) and Hinch 
(1972). 

The single most important quantity for the calculation of suspension rheology is 
the stresslet, and we illustrate the ideas of this section by computing the stresslet for 
an ellipsoid. 

2.2. The stresslet exerted by an ellipsoid in a generaljlow 

As described above, in order to determine S via the reciprocal theorem, we choose the 
(energy dissipation rate) conjugate field u: = E’.r. The problem of determining u’ 
was solved by Jeffery (1922) and, as noted by Cerf (1951)) has the property that 

d(r ) .  n(r)ls = T’ . n(r), 

where T’ is a constant (proportional to E’). It follows from (5) that 

E‘:S = pE’:Z: u,ndX, 

where the Jeffery solution shows that (referred to the natural axes p, q and r for the 
ellipsoid) 

I S  

I 4 J , ( ~ a 1 ) B - 5 s a B ) ( r ) y P 8 - - g s y 8 )  + z +I ( b 2 - c 2 ) 2  

ZaBy8 = J1J2+J2J3+J3J1 ( Il 4 J,(b2 + c2) + 21, b2ca 

(qa r, + q I r a )  ( q y  ‘8 + q a r y )  + * * *  

and the elliptic integrals 
notation as in $ 1 ,  

and Ji are given by Batchelor (1 970). Now, with the same 

3.3!  

When a = b = c, 0 2  = a2V2, and since (V4u,)O = 0 and Z becomes isotropic, we 
recover the result (3) for a sphere. The result above seems to be new. 

3. The Faxen relations for an almost-spherical viscous drop 
3.1. A reciprocal theorem 

We now consider a drop of fluid of viscosity hp and surface S immersed in an unbounded 
fluid of viscosity p with a prescribed flow u, (and corresponding stress am) at a large 
distance from the drop. A body force V$ acts on the drop such that it remains station- 
ary, and a surface tension y acts across S.  

Then the fluid velocity satisfies 

V.u=O, V . a = O  ) outside the drop, 
0 = -p l  +p(Vu + (VU)T) 

v . u  = 0, v . O  = V$ } inside the drop 
0 = -231 +Ap(Vu + (VU)T) 

with u -+ u, as r-+ 03, u . n = 0 on S, [u] = 0 and [u. n] = yn, where square brackets 
denote the jump across S. u’, c’, u:, y‘ and $’ satisfy a similar set of equations. Then 
we claim that 

18-2 
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where 8, is any surface which encloses the drop. This result is easy to prove. It 
follows that 

(u: . u. n -u. a', .n )dS  = [(uk - u'). u. n - u.  (u; - u') .n]dX s, Is, 

ISm SS, 

and, with errors O(l/R),  u .n and u on the right-hand side may be replaced by u, . n 
and u,. Thus by allowing R to become arbitrarily large we obtain 

(u: . u.n-u. u', . n)d8 = [(u: - u'). u,. n - u,. (a', - a') .n] dS. 

(6) 
3.2. Force on the drvp 

We first choose u& = U' and a; = 0. Then as shown by Batchelor (1967, $4 .9) )  the 
spherical shape of the drop is preserved even when y = 0 and 

with 
u', - u' = U' . ( I  + rr/r2)  pa/% +U' . (3rr/r2 - I )  a( 1 - p)  a3/r3 

where p =  (2+3A)/ (2+2h) .  

Hence substituting in ( 6 ) )  and noting that (V4u)0 = 0, gives directly 

h 
F = 47~pap urn+ ( 2 ( 2  + 3h) 

This result was first obtained by Hetsroni & Haber ( 1  970), by means of a full solution 
for the fluid velocity inside and outside the drop. In the case h = co we recover (1). 

3.3. The stresslet exerted by the drop 

We now choose u& = E' . r  and uk = 2pE'. Then as in Cox (1969)) for sufficiently 
large values of y / p a  the drop is nearly spherical and 

(7) 
with 

uk - u' = 5a1 r . E' . rra3/r5 + a,( 2 E ' .  r - 5r. E' . rr/@) a5/r5 

(uk - u') . r = - 2p [20a, a3r. E' . rr/r5 - 5a1 E' . ra3/r3 + Sa2 E' . ras/r5 
- 20a2 r . E' . rra5/r7], (8) 

where 

There are two contributions to these velocity and stress fields. The presence of a 
spherical drop with or without surface tension in the given flow induces an instantaneous 
velocity given by (7)  and (8) but with a1 = a2 = ( A  - 1)/(2A + 3 ) .  This term plainly 
vanishes when the viscosities of the two phases are the same. The second contribution 
arises from the product of the large surface tension of the drop and its small deviation 
from sphericity. The assumption that the drop shape is in equilibrium with the im- 
posed flow implies that this term is comparable in magnitude with the one previously 
discussed. It generates a velocity field of the form of (7) and (8) with 

a, = (1 9h + 16)/10(h + 1) (2h + 3 )  

a, = (5h + 2) / [10(h  + I)], az = h/2 (h  + 1). 

and 012 = (3h + 2) /2(h  + 1) (2h + 3) .  
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Now substituting these results into (6) gives 

This agrees with (3) in the limit h-tco. For other values of h this result seems not to 
have been written down before. 

I am grateful to Professor G .  K. Batchelor for the stimulus of setting $3.2 as a 
Tripos exercise - without solution. 
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